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Nonlinear quantum effects in optics 

D F WALLS? and C T TINDLE 
Department of Physics, University of Auckland, New Zealand 

MS received 20 October 1971 

Abstract. Nonlinear optical effects where quantum mechanical predictions are at variance 
with the results of classical calculations are studied. Certain initial conditions, those of 
unstable equilibrium or those that lead to unstable equilibrium, classically, give rise to an 
aperiodicity in the intensity of the emitted radiation. One example of such a system is second 
harmonic generation, which is studied in detail because of the potential amenability of the 
aperiodicity to experimental observation. Numerical and analytic predictions for the 
evolution of the intensity and photon statistics of the second harmonic light are presented. 
The photon statistics of the second harmonic light are predicted to undergo a sharp 
transition following the first maximum of the intensity. 

1. Introduction 

Since the advent of the laser, which is itself a nonlinear device, nonlinear optical etfects 
have been the subject of considerable research. Such effects arise, for example, in the 
emission of radiation from atoms where cooperative spontaneous emission, or super- 
radiance has been a particularly popular topic. Similar effects occur in nonlinear 
optics, for example parametric amplification, frequency conversion and second harmonic 
generation (SHG). 

These phenomena have been analysed theoretically by a variety of techniques. 
Perhaps the most popular approaches have been classical or semiclassical analyses 
owing to the inherent difficulty in solving nonlinear quantum problems by other than 
perturbative methods. In predicting the evolution of the intensity of the emitted radia- 
tion classical methods have for the most part enjoyed a considerable degree of success. 
The extremely large number of photons typically present in laser experiments validates 
a classical treatment of the electromagnetic field in a large number of phenomena. 
Such treatments, however, break down in situations where classically the initial condi- 
tions are those of unstable equilibrium. This occurs for example for a system of N atoms 
initially all excited with no photons present. Classically this system does not radiate. 
Quantum mechanically the atoms decay by spontaneous emission. Classical theorists 
overcame this deficiency by considering a very small displacement from the position of 
unstable equilibrium to simulate the onset of the radiation by spontaneous emission. 

Recently, evidence has been presented that for systems which classically are initially 
in a state of unstable equilibrium the quantum effects play a greater role than merely 
initiating the emission of quanta. Numerical analyses (Abate and Haken 1964, Walls 
and Barakat 1970) for the intensity of radiation emitted by N excited atoms have shown 
an aperiodicity not previously suspected. Arguments linking this aperiodicity to the 
quantum mechanical uncertainty principle have been advanced (Senitzky 1970. 197 1 ). 
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Experimental observation of this aperiodicity however, presents problems. The 
difficulty lies in creating initial conditions with all the atoms excited and no photons 
present. In this paper we wish to investigate further examples where anomalous 
quantum effects leading to aperiodicity are prevalent and which are perhaps more 
easily accessible to experimental observation. 

In the next section we introduce a phenomenological Hamiltonian which has 
relevance to a number of nonlinear optical phenomena. In $ 3  a detailed quantum 
analysis is made of second harmonic generation, which is found to display anomalous 
quantum effects. Preliminary results of such calculations have been reported in an 
earlier letter (Walls and Tindle 1971). Our interest in SHG is enhanced by the possibility 
that the anomalous effects predicted are amenable to experimental observation. In 0 4 
results of analytic and numerical calculations on the photon statistics of the second 
harmonic (SH) light are presented. In the final section we draw some general conclusions. 

2. General considerations in nonlinear optics 

Consider the following Hamiltonian describing the interaction of three coupled boson 
field modes: 

H = hwla:al +hw2uJa2 + hw3at,a3 +hti(a1a3aJ +afa:a2) (2.1) 

where the aj  are boson annihilation operators and ti is the coupling constant. This 
Hamiltonian may describe for example, the process of parametric amplification where 
a pump photon with frequency w2 and a signal photon with frequency w1 interact to 
produce an idler photon at the difference frequency w3 = w2 - wl. Alternatively it 
may describe frequency up conversion where a pump photon of frequency w 3  and a 
signal photon with frequency o1 interact to produce an idler photon at the sum frequency 
w2 = wl + w 3 .  We note that this is an idealized model owing to the restriction to 
monochromatic modes and the complete absence of loss terms. 

The Hamiltonian describing the interaction of N two level atoms with a single 
mode of the radiation field may be written (neglecting nonresonant terms) as 

N N 

H = hw3a5a3 +hw3 1 o:+hti 1 (a30f +ala;) 
j =  1 j =  1 

where a3 is a boson annihilation operator; 07, a,: and 0: are the raising, lowering and 
inversion operators for the jth atom. 

It is convenient to introduce the collective operators 

N 

J ,  = 10; 
j =  1 

N 

J -  = 10; 
j =  1 

J, = 1 a;. 
j =  1 

The phenomena described by the Hamiltonians (2.1) and (2.2) may be formally related 
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using the Schwinger representation for angular momentum (Schwinger 1965) 

J, = a l a 1  

J- = .:a2 (2.4) 

J, = +(a la2  -ala,) .  
The operators a l  and a2 obey boson commutation relations, however the eigenvalues 
of .:al and a l a 2  span the reduced integer spectrum from 0 to N, ,  where N, is the 
number of atoms acting in cooperation. With the transformation (2.4) the Hamiltonians 
(2.1) and (2.2) are formally identical. The eigenvalues nl and n,  of a:al and a:a2 
represent the occupation numbers of the lower and upper atomic levels with n ,  + n2 = N .  
provided N, = N. 

The numerical (Abate and Haken 1964, Walls and Barakat 1970, Walls 1970a) and 
analytic solutions (Bonifacio and Preparata 1970) found in the literature reveal that 
the properties of the emitted radiation vary considerably according to the initial condi- 
tions. The initial conditions n,  = n3 = 0, correspond to spontaneous emission from 
N excited atoms, or to the spontaneous parametric decay of a pump photon into a 
signal and idler photon. Classically, of course, this initial condition corresponds to an 
unstable equilibrium and no radiation takes place. 

A number of solutions of the Hamiltonians (equations (2.1), (2.2)) for such initial 
conditions have already been given. For a macroscopically large number of atoms an 
approximate analysis given by Bonifacio and Preparata (1970) yields an elliptic function 
behaviour for the intensity of the emitted photons. Numerical calculations (Abate and 
Haken 1964, Walls and Barakat 1970) show an aperiodic behaviour at variance with 
the elliptic function predictions. The variance of the photon distribution of the emitted 
light has been shown (Walls and Barakat 1970, Bonifacio and Preparata (1970) to 
increase as the mean number of photons squared, characteristic of a Bose-Einstein 
distribution. This feature is reflected in the probability distribution of the atomic 
energy. Thus as has been pointed out by Walls and Barakat (1970) it is not possible 
to form a superradiant state (characterized by n ,  = n2 = N/2, (Dicke 1954)) from 
an initial state with all atoms excited. This is in agreement with the analytic results 
of Bonifacio and Gronchi (1971) who show that the variance of the atomic energy 
increases as N 2  as the system approaches a state in which N / 2  atoms are in the ground 
level. This however disagrees with the results of Eberly and Rehler (1970), and 
Argarwal (1970) who found that the variance of the atomic energy under the same 
conditions is proportional to N .  

For initial conditions corresponding to a superradiant state classical and quantum 
mechanical predictions are in agreement. The system radiates a train of pulses whose 
shape closely resembles the square of a sine function. The statistics of the emitted 
photons have been shown to a good approximation to be poissonian (Walls and Barakat 
1970, Bonifacio and Preparata 1970) characteristic of the distribution of photons in a 
coherent state (Glauber 1963a, 1963b). 

The fundamental difference between the two sets of initial conditions may be 
understood in the following manner. Radiation from a system of atoms all excited 
occurs by spontaneous emission. Spontaneous emission may be considered as the 
amplification of the vacuum fluctuations, an essentially chaotic process. The presence 
of atoms in the ground state gives rise to a macroscopic transverse dipole which causes 
the atoms to begin radiating in a coherent or ‘classical’ manner. A comparison with the 
case of three interacting electromagnetic field modes (equation (2.1)) reveals that the 
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presence of atoms in the ground state corresponds to an input signal giving rise to 
stimulated emission. 

The same basic principles occurring in the emission of radiation from atoms arise in 
certain nonlinear optical phenomena. Parametric frequency up conversion is equivalent 
to exciting N atoms with a pulse of radiation. Numerical solutions for the intensity of 
the up converted radiation were given by Walls and Barakat (1970). The intensity of 
up converted photons follows closely a sine squared behaviour when the number of 
pump photons greatly exceeds the number of signal photons. The statistics of the emitted 
photons was shown to a good approximation to be poissonian. From this we may 
conclude that frequency up conversion under these conditions is essentially a coherent 
process. Atomic excitation by a 4 2  pulse corresponds to the case where the number of 
photons in the exciting pulse is equal to half the total number of atoms (n3 = n,/2). 
As Walls and Barakat (1970) have pointed out this is a suitable method to form a 
superradiant state owing to the coherent nature of the process. 

However as the number of pump and signal photons become comparable (n3 N n,) 
one observes a deviation from the sinusoidal behaviour. This deviation becomes most 
apparent for the degenerate case (n3 = n,) where a marked aperiodicity occurs. We 
observe that this degenerate case is an initial condition which classically would lead 
to a position of unstable equilibrium. A similar effect occurs in the excitation of an 
ensemble of atoms with a II pulse. Once excited the atomic system must decay by 
spontaneous emission resulting in the anomalous quantum effects discussed previously. 

These examples correspond to the second solution of the double root found by 
Senitzky (1971) in seeking solutions which yield results significantly different from 
classical solutions. Initial conditions corresponding to unstable equilibrium classically 
have been intensively studied since they represent the initial conditions for the onset 
of idealized maser and laser action. However it has passed unnoticed that initial condi- 
tions which classically lead to unstable equilibrium occur in the most widely studied 
phenomena in nonlinear optics ; second harmonic generation. In view ofthis we consider 
the process of SHG in some detail below. 

3. Second harmonic generation 

SHG is the degenerate case of frequency up conversion where the annihilation operators 
for the pump and signal modes are identical. It follows from equation (2.1) that SHG 
may be described by the following Hamiltonian : 

H = hoafa, +h2wa1a2 +hlc(a,a,a$ +afafa,). (3.ij 
A classical analysis of SHG (Armstrong et a1 1962) for perfect phase matching predicts 

that the intensity of SH photons from the vacuum will grow as 

n, fi2(t) = tanh2(Jn,z) (3.2) 
L 

where nl is the initial number of fundamental photons and z = Kt .  This predicts the 
number of SH photons to grow to a maximum equal to n1/2 and remain at this maximum 
for all times. That this is a position of unstable equilibrium may be verified by intro- 
ducing a small displacement from the equilibrium solution into the classical equations 
of motion. In this way one simulates the effects of spontaneous emission by which the 
SH field may recreate the fundamental field. 
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We now outline a quantum mechanical approach to the problem. We consider an 
initial state In , ,O) with n ,  fundamental photons and no SH photons present. The 
probability amplitude to have n2 SH photons present at time t is 

(3.3) 
On differentiating this expression with respect to time we arrive at the differential 
equation 

a,,(t) = ( n l  - 2n2, n21 exp( - iHt /h) (n ,  , 0). 

+{(n l  -2n2 + l ) ( n l  -2n2 +2)n2)”2an2- ,(z) (3.4) 
where z = KZ. For a macroscopically large number of fundamental photons an approxi- 
mate solution to this equation may be derived using the method developed by Bonifacio 
and Preparata (1970). This solution predicts the intensity of SH photons to oscillate 
as an elliptic function (Walls 1970b) 

where k = n,/(nl + 1) is the elliptic parameter of the jacobian elliptic function cn. The 
period of the oscillations is In n, /Jn , .  

Though this result includes the recreation of the fundamental by spontaneous 
emission it appears to be an approximation to the exact result. Equation (3.4) has been 
solved numerically and the resulting behaviour for i i2(z), the mean number of SH photons 
as a function of time, has been plotted in figure 1 for the initial conditions n ,  = 200, 
199 ; n2 = 0. One observes aperiodic behaviour at variance with the elliptic function 

100 I I 

50 - 

I 

1 
0 0 2  0 4  06 0 0  I O  12 

7 

Figure 1. Mean number E, of SH photons as a function of normalized time r for mitiai 
conditions n, = 200, n2 = 0 (full curve); n, = 199, n 2  = 0 (broken curve). 

prediction. This aperiodicity may be expected as a consequence of the initial conditions 
inherent in SHG which lead classically to a state of unstable equilibrium from which the 
SH photons may only decay by spontaneous emission. Strictly speaking the position 
of unstable equilibrium is only attained classically for an initial even number of 
fundamental photons. However we see from figure 1 that the aperiodicity is also present 
for an initial odd number of fundamental photons. This distinction does not arise in 
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actual experiments with lasers where the total number of photons is ill defined and is 
replaced by a probability distribution about a mean number. In any event spontaneous 
emission back into the fundamental mode always prevents the full conversion of the 
fundamental to SH. Thus of 200 fundamental photons only 190 are converted to yield 
a maximum of 95 SH photons. 

Mathematically the aperiodicity arises in the following manner. The mean number 
of SH photons may be written (Walls and Barakat 1970) in the form 

fi,(z) = C add, exp{ i(A - A’)z} 
11’ 

where 2, A‘ are the eigenvalues of the system and the add.  are coefficients related to the 
eigenfunctions. If the eigenvalues were spaced equidistantly a periodic behaviour of 
i i2(r) would necessarily follow. Various calculations of the eigenvalues for systems 
which classically are initially in unstable equilibrium (Tavis and Cummings 1968, 
Mallory 1969, Walls and Barakat 1970, Scharf 1970) yield a nonequidistant spacing. 
In figure 2 we display the eigenvalues for SHG for the initial conditions n, = 200, n2 = 0. 
It is seen that the eigenvalues are not spaced equidistantly, hence an aperiodicity in 
the evolution of the intensity results. 

Figure 2. bigenvalues (I,) for initial conditions n1 = 200, n2 = 0. Negative eigenvalues 
not shown since A-, = -Aj. 

A quasiperiod for the oscillations may be derived by considering the eigenvalue 
problem utilizing the method developed by Scharf (1970). For large n ,  it may be shown 
that the eigenvalues are spaced approximately equidistantly yielding a quasiperiod 
equal to In n , / J n , .  This is in agreement with the period extracted from the elliptic 
function solution (equation (3.5)). However it is apparent from figure 1 that this quasi- 
period only has any real meaning for the first two oscillations. 

It may be surmised that the aperiodicity arises 2s a consequence of the small photon 
number involved in these numerical calculations and that as the photon number 
becomes macroscopically large a periodic, classical type behaviour will ensue. However, 
solutions of equation (3.4) for 10 c n, < 200 show no change in the general shape of 
the fi,(t)/z curve. Further, Senitzky (1970, 1971) in studying the N atom problem has 
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argued that the aperiodicity is a consequence of the quantum mechanical uncertainty 
principle and will persist even for macroscopically large quantum numbers. Senitzky 
bases his arguments on the observation that for initial conditions near those of unstable 
equilibrium, the period is very sensitive to slight differences in the initial conditions. 
In taking expectation values one averages over the quantum fluctuations ; that is. 
an ensemble average is taken over a range of periods thereby resulting in aperiodicity. 

To date, however, no evidence of this aperiodicity has been detected. The experi- 
mental difficulties involved in preparing an excited ensemble of atoms with no photons 
present are considerable. The initial presence of photons or unexcited atoms results 
in a considerably more periodic behaviour (Walls and Barakat 1970). SHG, however 
offers much better hope of observing the aperiodicity since the initial condition of no 
SH photons present is exactly what one gets with a pulsed laser. For this reason we feel 
that SHG is the best example to illustrate anomalous nonlinear quantum effects. 

The effect of having some SH photons initially present has also been examined. 
In figure 3 we have plotted fi2(z)/z for the initial conditions n, = 50 and n2 = 0,1, 10. 
It is seen that while the presence of a small number of SH photons initially increases 
the periodicity, this effect is not enhanced by having a larger initial number of SH photons 
present. 

1 I 
0 0.5 1.0 1.5 2.0 2.5 

Figure 3. Mean number of SH photons as a function of T for initial conditions (a) n,  = 50, 
n, = 0 ;  (b) n ,  = 50, n2 = 1; ( c )  n, = 50, n2 = 10. 

The preceding work has all been done in the number state representation for the 
fundamental and SH modes since the computations are simpler in this representation. 
However a number state does not provide a good representation for a laser beam. 
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It has been shown by Glauber (1963a, 1963b) that a laser beam may be represented to a 
good approximation by a coherent state. To approximately simulate a coherent state 
we consider an input beam with a poissonian distribution of photons (this does not 
exactly simulate a coherent state since all phase information is lost). 

In figure 4 we have plotted ii,(t)/t for an initial poissonian input of photons with 
mean number E, = 50. Upon comparison with figure 3(a) ( n ,  = 50) we note that the 
aperiodicity persists while a smoothing of the random fluctuations is apparent. 

0 0.5 1.0 ~ 1.5 2.0 2.5 

Figure 4. Mean number Of SH photons as a function of T for an initial poissonian distribution 
of fundamental photons with ii, = 50, and n, = 0. 

4. Photon statistics of the SH light 

As previously mentioned, the statistics of the photons emitted in the radiation process 
are strongly dependent on the initial conditions of the system. The photon statistics 
contain information relating to the degree of coherence inherent in the process and 
we shall now investigate them in some detail. 

We consider first the photon statistics produced from an initial number state of 
fundamental photons Inl) with no SH photons present. For short times such that the 
only coefficients a,,(z) appreciably different from zero are the ones for which n2 << n, 
we may replace equation (3.4) by the approximate equation 

This equation may be readily solved yielding Pn,(t)  the probability of having n2 SH 
photons at time t 

E,(t)”’ 
Pn2( t )  = lan,(zN2 = exp( -ii2(t))- 

n2 ! 

where E2(t) = nfz’. This solution represents a good approximation to the exact solu- 
tion for times z << z,,,,,~ N f In n1/n:/’  so that ii2 << n l .  Thus the probability distribution 
of the SH photons has been shown to be poissonian for times z << 9111 nl/n:i2.  

The time evolution of the SH photon distribution for n, = 200 is indicated in 
figure 5. As the mean number of SH photons grows up to the first maximum (see figure 1) 
the SH photons show a smooth distribution with a variance which is approximately 
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Figure 5. Evolution of the probability distribution of SH photons for initial conditions 
n, = 200, n2 = 0. The distributions are discrete the points having been joined for clarity. 

equal to fi2(7), characteristic of a Poisson distribution. This is in agreement with the 
analytic result derived above. As the peak is reached spontaneous emission becomes 
significant. This is a chaotic process and the smoothness of the distribution is lost. 
Beyond the first maximum the distribution becomes spread out and more chaotic as 
time progresses. For later times the distribution also shows a distinction between odd 
and even numbers of SH photons. This hereto unexplained effect was also observed 
in the emission of photons from an ensemble of excited atoms (Walls and Barakat 1970). 

It is of greater interest to consider as before a coherent fundamental mode since this 
provides a good representation for the input of a laser beam. We consider therefore an 
initial density operator 

where the fundamental mode is in a coherent state la1)  and the SH mode is in the vacuum. 
We shall present a derivation of the density operator for the SH mode at time t. 

We begin with the Heisenberg equations of motion for the operators al(t), az(t)  derived 
from the Hamiltonian (equation (3.1)). With the substitutions 

al(t) = A,(t)exp(-iot) 

az(t)  = A,(t) exp( - 2iot) 
(4.4) 
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the Heisenberg equations of motion may be written in the form 

A,(t) = 2ilc~:(t)A,(t) 

A,(t) = ilcAl(t)Al(t). 

A&)+ 2.2(2Af(t)A1(t)+ 1)A,(t) = 0. 

A second differentiation of A,(t) yields 

543 

(4.5) 

(4.6) 

From the above equations it follows that : 

A2(0) = a m  
A,(o) = ilcal(0)al(O) (4.7) 

k’,(O) = - 2.2(2af(O)a1(0) + l)a,(O). 

A,(t) = az(0) +ilcta,(0)al(O)- (lct)2(2af(0)a,(0) + 1)a2(0) 

The solution for A,( t )  may now be expanded in a Taylor series 

(4.8) 

where we have included terms up to second order in t. 
The P representation for the SH mode at time t as defined by Glauber (1965) is 

Substituting equations (4.3), (4.4) and (4.8) into equation (4.9) we obtain 

d2q exp[q*{a, - ilct exp( - 2iot)a:)I 
71 

x exp[ - q{a$ + ilct exp(2iot)a:jl 

= d 2 ( a 2  - ilcta: exp( - 2iwt)). (4.10) 

Thus the density operator at time t for the SH field correct up to second order in t is 

(4.1 1) P 2 ( 4  = la,(t)> (@2(t)l 

where 

aZ(t)  = ilcta: exp( - 2iot). 

Thus to a good approximation the SH light is initially produced in a coherent state. 
To simulate the input of a coherent state numerically we consider an input of photons 

with a Poisson distribution. The evolution of the photon distribution of the SH light 
with time is plotted in figure 6 for a poissonian input with mean number iil = 50. 

The character of the distribution is determined by plotting a/,/fi, against 5 (figure 7) 
where a is the standard deviation. A value close to unity then indicates a Poisson 
distribution. The statistics of the SH photons are seen to be approximately poissonian 
for times out to the first maximum of the intensity ( T ~ ~ ~ ~ ) .  This is in agreement with the 
analytic result derived above. Thus SHG approximately preserves coherence at  least 
over interaction times attainable by present experiments. This has been verified experi- 
mentally by Clark et al(1970) who find that the process of SHG causes an enhancement 
by a factor of four of the small fundamental fluctuations while still approximately 
preserving the shape of the input Poisson distribution. 
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7-0.35 
0'05$ pn2 30 

0 IO 20 
" 2  

Figure 6. Evolution of the probability distribution of SH photons for an initial poissonian 
distribution with A, = 50, n2 = 0. 

Figure7. u/&i2 (where U is the standard deviation of the photon distribution of the SH 
light) as a function of T for an initial poissonian input distribution with f i ,  = 50, n2 = 0. 

However as t exceeds T,,,, the statistics of the SH light undergo a sudden change. 
This is vividly illustrated in figure 7 where at t,,,, the standard deviation 0 is no longer 
equal to ,/ez and the photon distributions (figure 6 )  which were initially poissonian in 
shape flatten out. 

An understanding of this phenomenon may be reached by observing that at 
z = t,,,, the spontaneous emission of SH photons back into the fundamental mode 
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becomes the dominant effect. This is as previously noted a chaotic process. Thus one 
has a sharp transition between a coherent process, the creation of SH photons, and a 
chaotic process, the spontaneous decay into fundamental photons. This transition 
should be accessible to experimental observation providing the efficiency of existing 
SHG experiments is increased to reach times greater than z,,,, . 

5. Conclusions 

A review has been made of a number of radiating systems under a variety of initial 
conditions. For systems which classically would be initially either in a state of unstable 
equilibrium, or in a state which would lead to unstable equilibrium, numerical calcula- 
tions predict an aperiodicity in the intensity of the emitted radiation. An ensemble of 
excited atoms with no photons present initially is a well known example of the first 
situation. This however is a difficult state to prepare and thus experimental observation 
of the predicted aperiodicity would be difficult. An example of the second situation is 
provided by SHG. The predicted aperiodicity in SHG is more readily accessible to experi- 
mental observation since the initial conditions may be readily satisfied with the use of 
a pulsed laser. 

The photon distribution of the SH light, which initially has a variance equal to the 
mean number of SH photons characteristic of a Poisson distribution, assumes a chaotic 
character upon reaching the first maximum of the intensity. This effect occurs as the 
result of the spontaneous decay of the SH back into the fundamental mode, an essentially 
chaotic process. This transition should be accessible to experimental observation with 
an efficient SHG experiment capable of attaining interaction times greater than T , , , ~ ~ ,  . 

References 

Abate E and Haken H 1964 2. Naturf. 19A 857 
Argarwal G S 1970 Phys. Rev. A 2 2038-946 
Armstrong J A, Bloernbergen N, Ducuing J and Pershan P S 1962 Phys. Rev. 127 1918-39 
Bonifacio R and Preparata G 1970 Phys. Rev. A 2 33647 
Bonifacio R and Gronchi M 1971 Lett. Nuooo Cim. 1 1105-8 
Clark W G, Estes L E and Narducci L M 1970 Phys. Lett. 33A 517-8 
Dicke R H 1954 Phys. Rev. 93 99-1 10 
Eberly J H and Rehler N E 1970 Phys. Rev. A 2 1607-10 
Glauber R J 1963a Phys. Rev. 130 2529-39 

~ 1963b Phys. Rev. 131 276688 
- 1965 Quantum Optics and Electronics eds C de Witt, A Blandin and C Cohen-Tannoudji (New York: 

Mallory W R 1969 Phys. Rev. 188 1976-87 
Scharf G 1970 Helv. Phys. Acta 43 806-28 
Schwinger J 1965 Quantum Theory of Angular Momentum eds L C Biedenharn and H Dam (New York: 

Senitzky I R 1970 Phys. Rev. A 2 2046-9 
- 1971 Phys. Rev. A 3 421-36 
Tavis M and Cummings F W 1968 Phys. Rev. 170 379-84 
Walls D F 1970a Quantum Optics eds S M Kay and A Maitland (New York: Academic Press) 
~ 1970b Phys. Lett. 32A 47677 
Walls D F and Barakat R 1970 Phys. Reo. A 1 446-53 
Walls D F and Tindle C T 1971 Lett. Nuooo Cim. 2 915 

Gordon and Breach) 

Academic Press) 


